Bioinformatics and Computational Biology Solutions Using R and Bioconductor

  • 1

    Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods 5, 621–628 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 2

    Wang, Z., Gerstein, M. & Snyder, M. RNA-seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 3

    Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 4

    Robinson, M.D. & Smyth, G.K. Moderated statistical tests for assessing differences in tag abundance. Bioinformatics 23, 2881–2887 (2007).

    Article  CAS  PubMed  Google Scholar

  • 5

    Robinson, M.D. & Smyth, G.K. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 9, 321–332 (2008).

    Article  PubMed  Google Scholar

  • 6

    Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 7

    McCarthy, D.J., Chen, Y. & Smyth, G.K. Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 8

    Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  PubMed  PubMed Central  Google Scholar

  • 9

    Zemach, A. et al. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153, 193–205 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 10

    Lam, M.T. et al. Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498, 511–515 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 11

    Ross-Innes, C.S. et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481, 389–393 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 12

    Robinson, M.D. et al. Copy-number-aware differential analysis of quantitative DNA sequencing data. Genome Res. 22, 2489–2496 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 13

    Vanharanta, S. et al. Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer. Nat. Med. 19, 50–56 (2013).

    Article  CAS  PubMed  Google Scholar

  • 14

    Samstein, R.M. et al. Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification. Cell 151, 153–166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 15

    Johnson, E.K. et al. Proteomic analysis reveals new cardiac-specific dystrophin-associated proteins. PloS ONE 7, e43515 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 16

    Fonseca, N.A., Rung, J., Brazma, A. & Marioni, J.C. Tools for mapping high-throughput sequencing data. Bioinformatics 28, 3169–3177 (2012).

    Article  CAS  PubMed  Google Scholar

  • 17

    Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 18

    Bullard, J.H., Purdom, E., Hansen, K.D. & Dudoit, S. Evaluation of statistical methods for normalization and differential expression in mRNA-seq experiments. BMC Bioinform. 11, 94 (2010).

    Article  CAS  Google Scholar

  • 19

    Grabherr, M.G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 20

    Siebert, S. et al. Differential gene expression in the siphonophore Nanomia bijuga (Cnidaria) assessed with multiple next-generation sequencing workflows. PLoS ONE 6, 12 (2011).

    Article  CAS  Google Scholar

  • 21

    Trapnell, C., Pachter, L. & Salzberg, S.L. TopHat: discovering splice junctions with RNA-seq. Bioinformatics 25, 1105–1111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 22

    Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 23

    Hardcastle, T.J. & Kelly, K.A. baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinform. 11, 422 (2010).

    Article  Google Scholar

  • 24

    Zhou, Y.-H., Xia, K. & Wright, F.A. A powerful and flexible approach to the analysis of RNA sequence count data. Bioinformatics 27, 2672–2678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 25

    Tarazona, S., Garcia-Alcalde, F., Dopazo, J., Ferrer, A. & Conesa, A. Differential expression in RNA-seq: a matter of depth. Genome Res. 21, 2213–2223 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 26

    Lund, S.P., Nettleton, D., McCarthy, D.J. & Smyth, G.K. Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. Stat. Appl. Genet. Mol. Biol. 11, pii (2012).

    Article  CAS  Google Scholar

  • 27

    Soneson, C. & Delorenzi, M. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinform. 14, 91 (2013).

    Article  Google Scholar

  • 28

    Lareau, L.F., Inada, M., Green, R.E., Wengrod, J.C. & Brenner, S.E. Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 446, 926–929 (2007).

    Article  CAS  PubMed  Google Scholar

  • 29

    Anders, S., Reyes, A. & Huber, W. Detecting differential usage of exons from RNA-seq data. Genome Res. 22, 2008–2017 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 30

    Glaus, P., Honkela, A. & Rattray, M. Identifying differentially expressed transcripts from RNA-seq data with biological variation. Bioinformatics 28, 1721–1728 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 31

    Van De Wiel, M.A. et al. Bayesian analysis of RNA sequencing data by estimating multiple shrinkage priors. Biostatistics 14, 113–128 (2013).

    Article  PubMed  Google Scholar

  • 32

    Blekhman, R., Marioni, J.C., Zumbo, P., Stephens, M. & Gilad, Y. Sex-specific and lineage-specific alternative splicing in primates. Genome Res. 20, 180–189 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 33

    Okoniewski, M.J. et al. Preferred analysis methods for single genomic regions in RNA sequencing revealed by processing the shape of coverage. Nucleic Acids Res. 40, e63 (2012).

    Article  CAS  PubMed  Google Scholar

  • 34

    Hansen, K.D., Wu, Z., Irizarry, R.A. & Leek, J.T. Sequencing technology does not eliminate biological variability. Nat. Biotechnol. 29, 572–573 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 35

    Leek, J.T. et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet. 11, 733–739 (2010).

    Article  CAS  PubMed  Google Scholar

  • 36

    Auer, P.L. & Doerge, R.W. Statistical design and analysis of RNA sequencing data. Genetics 185, 405–416 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 37

    Gagnon-Bartsch, J.A. & Speed, T.P. Using control genes to correct for unwanted variation in microarray data. Biostatistics 13, 539–552 (2011).

    Article  PubMed  Google Scholar

  • 38

    Leek, J.T. & Storey, J.D. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 3, 1724–1735 (2007).

    Article  CAS  PubMed  Google Scholar

  • 39

    Myers, R.M. Classical and Modern Regression with Applications 2nd edn. (Duxbury Classic Series, 2000).

  • 40

    Gentleman, R. Reproducible research: a bioinformatics case study. Stat. Appl. Genet. Mol. Biol. 4, Article2 (2005).

    Article  PubMed  Google Scholar

  • 41

    Trapnell, C. & Salzberg, S.L. How to map billions of short reads onto genomes. Nat. Biotechnol. 27, 455–457 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 42

    Wu, T.D. & Nacu, S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26, 873–881 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 43

    Wang, K. et al. MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res. 38, e178 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 44

    Liao, Y., Smyth, G.K. & Shi, W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 41, e108 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 45

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  Google Scholar

  • 46

    Thorvaldsdóttir, H., Robinson, J.T. & Mesirov, J.P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 47

    Fiume, M., Williams, V., Brook, A. & Brudno, M. Savant: genome browser for high-throughput sequencing data. Bioinformatics 26, 1938–1944 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 48

    Fiume, M. et al. Savant genome browser 2: visualization and analysis for population-scale genomics. Nucleic Acids Res. 40, 1–7 (2012).

    Article  CAS  Google Scholar

  • 49

    Morgan, M. et al. ShortRead: a Bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics 25, 2607–2608 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 50

    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 51

    Brooks, A.N. et al. Conservation of an RNA regulatory map between Drosophila and mammals. Genome Res. 21, 193–202 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 52

    Edgar, R., Domrachev, M. & Lash, A.E. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 53

    Cox, D.R. & Reid, N. Parameter orthogonality and approximate conditional inference. J. Roy. Stat. Soc. Ser. B Method. 49, 1–39 (1987).

    Google Scholar

  • 54

    Dudoit, S., Yang, Y.H., Callow, M.J. & Speed, T.P. Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Stat. Sinica 12, 111–139 (2002).

    Google Scholar

  • 55

    Bourgon, R., Gentleman, R. & Huber, W. Independent filtering increases detection power for high-throughput experiments. Proc. Natl. Acad. Sci. USA 107, 9546–9551 (2010).

    Article  PubMed  Google Scholar

  • 56

    Robinson, M.D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 57

    Cappiello, C., Francalanci, C. & Pernici, B. Data quality assessment from the user's perspective. Architecture 22, 68–73 (2004).

    Google Scholar

  • 58

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).

    Google Scholar

  • 59

    Wu, H., Wang, C. & Wu, Z. A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data. Biostatistics 14, 232–243 (2012).

    Article  PubMed  PubMed Central  Google Scholar

  • 60

    Smyth, G.K. Limma: linear models for microarray data. In Bioinformatics and Computational Biology Solutions Using R and Bioconductor (eds. Gentleman, R. et al.) 397–420 (Springer, 2005).

  • 61

    Nookaew, I. et al. A comprehensive comparison of RNA-seq–based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Res. 40, 10084–10097 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 62

    Rapaport, F. et al. Comprehensive evaluation of differential expression analysis methods for RNA-seq data http://arXiv.org/abs/1301.5277v2 (23 January 2013).

  • 63

    Hansen, K.D., Irizarry, R.A. & Wu, Z. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 13, 204–216 (2012).

    Article  PubMed  PubMed Central  Google Scholar

  • 64

    Risso, D., Schwartz, K., Sherlock, G. & Dudoit, S. GC-content normalization for RNA-seq data. BMC Bioinform. 12, 480 (2011).

    Article  CAS  Google Scholar

  • 65

    Delhomme, N., Padioleau, I., Furlong, E.E. & Steinmetz, L. easyRNASeq: a Bioconductor package for processing RNA-seq data. Bioinformatics 28, 2532–2533 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • 66

    Leisch, F. Sweave: dynamic generation of statistical reports using literate data analysis. In Compstat 2002 Proceedings in Computational Statistics Vol. 69 (eds. Härdle, W. & Rönz, B.) 575–580. Institut für Statistik und Wahrscheinlichkeitstheorie, Technische Universität Wien (Physica Verlag, 2002).

  • Bioinformatics and Computational Biology Solutions Using R and Bioconductor

    Source: https://www.nature.com/articles/nprot.2013.099?error=cookies_not_supported&code=150f1d84-d4e9-4aa3-93d9-118240637883

    0 Response to "Bioinformatics and Computational Biology Solutions Using R and Bioconductor"

    Post a Comment

    Iklan Atas Artikel

    Iklan Tengah Artikel 1

    Iklan Tengah Artikel 2

    Iklan Bawah Artikel